Home
Class 12
MATHS
The maximum value of (logx)/x is ...

The maximum value of `(logx)/x` is (a) `1` (b) `2/e` (c) `e` (d) `1/e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The minimum value of x(log)_(e)x is equal to e (b) 1/e(c)-1/e (d) 2e( e )e

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

Show that the maximum value of (1/x)^x is e^(1//e) .

Show that the maximum value of (1/x)^x is e^(1//e) .

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0