Home
Class 12
MATHS
if f(x)=4x^3-x^2-2x+1 and g(x)={min{f(t)...

if `f(x)=4x^3-x^2-2x+1` and `g(x)={min{f(t): 0<=t<=x; 0<=x<=1, 3-x : 1}` then g(1/4)+g(3/4)+g(5/4) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|+|x-2| and g(x)={min{f(t):0<=t<=x,0<=x<=3 and x-2,x then g(x) is not differentiable at

Let f (x)= x^3+ x^2+ x+ 1 and g(x)=max[f(t)] , 0<=t<=x , 0<=x<=1 and f(x)=3-x , 1 < x<=2 then function g(x) is

f(x)=x^(2)-4|x| and g(x)={min{f(t):-6<=t<=x},x in[-6,0] and max{f(t):0

Let f(x) = -x^(3) + x^(2) - x + 1 and g(x) = {{:(min(f(t))",",0 le t le x and 0 le x le 1),(x - 1",",1 lt x le 2):} Then, the value of lim_(x rarr 1) g(g(x)) , is........ .

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

Evaluate the following w.r.t x: If f'(x)= 4 x^3 - 3 x^2 +2x +k, f(0)=1 and f(1)=4, find f(x)

f(x)=1+4x-x^(2)*Vx in Rg(x)=max{f(t);x<=t<=(x+1);0<=x<=3}=min{(x+3);3<=x<=5

If f (x) is defined [-2, 2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/((x^(2)+3)) , then int_(-2)^(2)g(x)dx=