Home
Class 12
MATHS
[" The largest real value of ' "x" ',"],...

[" The largest real value of ' "x" ',"],[qquad sum_(r=0)^(4)((5^(4-r))/((4-r)!))((x^(r))/(r!))=(8)/(3)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest real value of x, such that sum_(r=0)^(4) ((5^(4-r))/((4-r)!))((x^(r))/(r!)) = (8)/(3) is

The largest real value of x, such that sum_(r=0)^(4) ((5^(4-r))/((4-r)!))((x^(r))/(r!)) = (8)/(3) is

The largest real value of x, such that sum_(r=0)^(4) ((5^(4-r))/((4-r)!))((x^(r))/(r!)) = (8)/(3) is

sum_(r=1)^oo((4r+5)5^(-r))/(r(5r+5))

sum_(r=1)^oo((4r+5)5^(-r))/(r(5r+5))

sum_(r=1)^oo((4r+5)5^(-r))/(r(5r+5))

sum_(r=1)^(oo)((4r+5)5^(-r))/(r(5r+5))

Find sum_(r=1)^oo 4 (0.5)^r

If sum_(r=0)^(n-1)((^nC_(r))/(nC_(r)+^(n)C_(r+1)))^(3)=(4)/(5) then n=

The value of C(34,5)+sum_(r=0)^(4)C(38-r,4)=