Home
Class 11
MATHS
int(0)^( pi)|cos x-sin x|dx=...

int_(0)^( pi)|cos x-sin x|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2 pi)|cos x-sin x|dx is

int_(0)^( pi/2)|cos x-sin x|dx

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

int_ (0) ^ (2 pi) | cos x-sin x | dx =

[int_(0)^( pi/2)cos x*e^(sin x)dx=.........],[[" (A) "e+1," (B) "e-1," (C) "e," (D) "-e]]

int_(0)^( pi)cos2x*log(sin x)dx

int_0^(pi/4) (cos x- sin x) dx + int_(pi/4)^((5pi)/4) (sinx-cosx) dx + int_(2pi)^(pi/4) (cosx- sinx) dx =

Evaluate: int_(0)^(n pi+t)(|cos x|+|sin x|)dx, where t in[0,f[(pi)/(2))