Home
Class 12
MATHS
lim(x rarr0)(cos'(cos x))/(sin'(sin x))"...

lim_(x rarr0)(cos'(cos x))/(sin'(sin x))" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)cos(sin x)

lim_(x rarr0)(cos^(-1)(cos x))/(sin^(-1)(sin x)) is equal to :

lim_(x rarr0)(1-cos x)/(sin x)

lim_(x rarr0)(cos x-cos3x)/(x(sin3x-sin x))

lim_(x rarr0)(x(cos x+cos2x))/(sin x)=?

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

lim_(x rarr0)[cos x]is

lim_(x rarr0)(cot x)^(sin x)

(ii) lim_(x rarr0)(x(cos x+cos2x))/(sin x)