Home
Class 12
MATHS
If A=[(0,-1),(1,0)],B=[(0,i),(i,0)] then...

If `A=[(0,-1),(1,0)],B=[(0,i),(i,0)]` then

A

`A^(2)=B^(2)=I`

B

`A^(2)=B^(2)=-I`

C

`A^(2)=I,B^(2)=-I`

D

`A^(2)=-I,B^(2)=I`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -4|8 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)],C=[(0,i),(i,0)] then

If A=[(0,1),(1,0)], B=[(2,0),(0,1)] then (AB)^(T)=

If A=[(0,-1),(1,0)]B=[(0,i),(i,0)]C=[(i,0),(0,-i)] then

If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)] and C=[(0,i),(i,0)] and I is the unit matrix of order 2, then show that (i) A^(2)=B^(2)=C^(2)=-I (ii) AB=-BA=-C .

If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following holds for all nge1 , by the principle of mathematical induction.

If A=[(1,1,0),(0,1,1),(0,0,1)] then A^(2)=

If A=[(2,0),(3,0)],B=[(0,0),(1,2)],C=[(0,0),(3,4)] then

If A=[(1,0,0),(0,2,1),(1,0,3)] then (A-I)(A-2I)(A-3I)=