Home
Class 12
MATHS
If A=[(1,1,0),(0,1,1),(0,0,1)] then A^(2...

If `A=[(1,1,0),(0,1,1),(0,0,1)]` then `A^(2)=`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -4|8 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,1,0),(0,1,1),(0,0,1)] and ninN then A^(n)=

If A=[(1,0,0),(0,2,1),(1,0,3)] then (A-I)(A-2I)(A-3I)=

If A=[(1,0,0),(1,0,1),(0,1,0)] Then tra(A)

If A = [[1,1,0],[0,1,0],[1,0,1]] then A^(3) =

If A=[(0,1),(1,0)] then A^(4)=

If A=[(0,1),(1,0)] then A^(2004)=

If A=[(0,-1),(1,0)],B=[(0,i),(i,0)] then

If A=[(0,1,-2),(-1,0,3),(2,-3,0)] then A+A^(T)=

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1A MCQ (ALGEBRA OF MATRICES)
  1. Find the rank of the matrix A=[(1,4),(0,1)],

    Text Solution

    |

  2. If A=[(1,0,0),(1,0,1),(0,1,0)] Then tra(A)

    Text Solution

    |

  3. If A=[(1,1,0),(0,1,1),(0,0,1)] then A^(2)=

    Text Solution

    |

  4. if n is a positive integer and A=[(a,0,0),(0,b,0),(0,0,c)] then A^(n) ...

    Text Solution

    |

  5. If A = [(cos theta, sin theta),(-sin theta, cos theta)] then show that...

    Text Solution

    |

  6. If A=[(cos theta, sin theta),(- sin theta, cos theta)] then lim(nto oo...

    Text Solution

    |

  7. If A=[(-cos theta, sin theta),(sin theta, cos theta)] then IAI=

    Text Solution

    |

  8. If A=[(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha,sin^(2...

    Text Solution

    |

  9. If alpha-beta=(2n+1)(pi)/2, n epsilon Z then [(cos^(2) alpha, cos alph...

    Text Solution

    |

  10. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)], then A(a...

    Text Solution

    |

  11. If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

    Text Solution

    |

  12. If A=[(0,c,-b),(-c,0,a),(b,-a,0)] then A^(3)=

    Text Solution

    |

  13. If A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A^(3)=

    Text Solution

    |

  14. If A=[(1,1,-2),(0,1,4),(2,3,1)] then A^(3)-3A^(2)-5A=

    Text Solution

    |

  15. A=[{:(1,2,2),(2,1,2),(2,2,1):}], then A^(3) - 4A^(2) -6A is equal to

    Text Solution

    |

  16. If A=[(4,2),(-1,1)] then (A-21) (A-3I)=

    Text Solution

    |

  17. If A=[(8,-6,2),(-6,7,-4),(2,-4,3)] then A(A-3I)(A-15I)=

    Text Solution

    |

  18. If A=[(1,0,0),(0,2,1),(1,0,3)] then (A-I)(A-2I)(A-3I)=

    Text Solution

    |

  19. If A=[(1,3),(3,4)] and A^(2)-kA-5I(2)=O then k=

    Text Solution

    |

  20. If A=[(-8,5),(2,4)] satisfies the equation f(x)=x^(2)+4x-p=0 then p=

    Text Solution

    |