A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
MATRICES
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 VideosMATRICES
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 VideosMATRICES
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -4|8 VideosMATHEMATICAL REASONING [APPENDIX - 4]
DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 VideosMEASURES OF DISPERSION
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos
Similar Questions
Explore conceptually related problems
DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1A MCQ (ALGEBRA OF MATRICES)
- If A=[(-cos theta, sin theta),(sin theta, cos theta)] then IAI=
Text Solution
|
- If A=[(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha,sin^(2...
Text Solution
|
- If alpha-beta=(2n+1)(pi)/2, n epsilon Z then [(cos^(2) alpha, cos alph...
Text Solution
|
- If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)], then A(a...
Text Solution
|
- If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=
Text Solution
|
- If A=[(0,c,-b),(-c,0,a),(b,-a,0)] then A^(3)=
Text Solution
|
- If A=[(1,1,3),(5,2,6),(-2,-1,-3)] then A^(3)=
Text Solution
|
- If A=[(1,1,-2),(0,1,4),(2,3,1)] then A^(3)-3A^(2)-5A=
Text Solution
|
- A=[{:(1,2,2),(2,1,2),(2,2,1):}], then A^(3) - 4A^(2) -6A is equal to
Text Solution
|
- If A=[(4,2),(-1,1)] then (A-21) (A-3I)=
Text Solution
|
- If A=[(8,-6,2),(-6,7,-4),(2,-4,3)] then A(A-3I)(A-15I)=
Text Solution
|
- If A=[(1,0,0),(0,2,1),(1,0,3)] then (A-I)(A-2I)(A-3I)=
Text Solution
|
- If A=[(1,3),(3,4)] and A^(2)-kA-5I(2)=O then k=
Text Solution
|
- If A=[(-8,5),(2,4)] satisfies the equation f(x)=x^(2)+4x-p=0 then p=
Text Solution
|
- If ((3,-2),(-1,2))((x),(y))=((11),(-5)), then 3x+7y=
Text Solution
|
- If [(1,-tan theta),( tan theta,1)][(1,tan theta),(-tan theta, 1)]^-1=[...
Text Solution
|
- [(x,y,z)][(a,h,g),(h,b,f),(g,f,c)][(x),(y),(z)]=
Text Solution
|
- If A=[(2),(0),(1)],B-[(4,-2,5)],C=[(0,1),(1,0),(-1,1)] then ABC=
Text Solution
|
- If [[x,4,-1]][(2,1,0),(1,0,2),(0,2,4)][(x),(4),(-1)]=0 then x=
Text Solution
|
- If A=[(x,1),(1,0)] and A^(2)=I then x=
Text Solution
|