Home
Class 12
MATHS
If A=[(1,-1),(2,-1)],B=[(x,1),(y,-1)] an...

If `A=[(1,-1),(2,-1)],B=[(x,1),(y,-1)]` and `(A+B)^(2)=A^(2)+B^(2)` then `(x,y)=`

A

`(1,4)`

B

`(2,1)`

C

`(3,3)`

D

`(0,1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C MCQ (INVERSE MATRIX)|88 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -4|8 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2, x),(3,-1,2)] and B=[(y),(x),(1)] be such that AB=[(6),(8)] , then

If (x ^(2))/(a ^(2)) - (y ^(2))/(b ^(2)) =1 then (dy)/(dx)=

If a, b are noncollinear vectors and A = (x + 4y) a + (2x + y + 1)b, B = (y - 2x +2) a + (2x - 3y - 1) b and 3A = 2B, then (x, y) =

If A ={1,2,3},B={x,y} then AxxB =

Let (x, y) be such that sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2 . Match the statements in column I with statements in column II. {:("Column I", "Column II"), ("A) If a = 1 and b = 0, then (x, y)", "p) lies on the circle "x^(2)+y^(2)=1), ("B) If a = 1 and b = 1, then (x, y)", "q) lies on "(x^(2)-1)(y^(2)-1)=0), ("C) If a = 1 and b = 2, then (x, y)", "r) lies on y = x"), ("D) If a = 2 and b = 2, then (x, y)", "s) lies on "(4x^(2)-1)(y^(2)-1)=0):}

If 1/((1-2x)(1+3x))=A/(1-2x)+B/(1+3x) , then 2B =

If the pair of lines a_(1)x^(2)+2h_(1)xy+b_(1)y^(2)=0 and a_(2)x^(2)+2h_(2)xy+b_(3)y^(2)=0 have one line in common then show that (a_(1)b_(2)-a_(2)b_(1))^(2)+4(a_(1)h_(2)-a_(2)h_(1))(b_(1)h_(2)-b_(2)h_(1))=0

If (1+x+x^(2))^(n)=b_(0)+b_(1)x+b_(2)x^(2)+….+b_(2n)x^(2n) then prove that b_(1)+b_(3)+b_(5)+…..+b_(2n-1) = (3^(n)-1)/(2)

If |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|=|(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1)| , then the two triangles with vertices (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) and (a_(1),b_(1)),(a_(2),b_(2)),(a_(3),b_(3)) must be

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1A MCQ (ALGEBRA OF MATRICES)
  1. If [[x,4,-1]][(2,1,0),(1,0,2),(0,2,4)][(x),(4),(-1)]=0 then x=

    Text Solution

    |

  2. If A=[(x,1),(1,0)] and A^(2)=I then x=

    Text Solution

    |

  3. If A=[(1,-1),(2,-1)],B=[(x,1),(y,-1)] and (A+B)^(2)=A^(2)+B^(2) then (...

    Text Solution

    |

  4. If A=[(4,1,0),(1,-2,2)],B=[(2,0,-1),(3,1,4)],C=[(1),(2),(-1)] and (3B-...

    Text Solution

    |

  5. If A,b are two square matrices such that AB=A,BA=B then A,B are

    Text Solution

    |

  6. If A,B are two idempotent matrices and AB=BA=O then A+B is

    Text Solution

    |

  7. If A and B are square matrices of size nxxn such that A^(2)-B^(2)=(A-B...

    Text Solution

    |

  8. If a=[(1,2,3),(2,4,5),(x,5,6)] and A^(T)=A then x=

    Text Solution

    |

  9. If A=[(x,1,4),(-1,0,7),(-4,-7,0)] such that A'=-A then x=

    Text Solution

    |

  10. If A=[(0,1,-2),(-1,0,3),(2,-3,0)] then A+A^(T)=

    Text Solution

    |

  11. If A=[(1,-1,2),(2,1,-3),(-2,1,2)],B=[(2,1,0),(2,-3,1),(1,1,-1)] then (...

    Text Solution

    |

  12. If A=[(1,2,3)],B=[(2),(3),(-1)] then (A+B^(T))^(T)=

    Text Solution

    |

  13. If A=[(1),(0),(-1)],B=[(2,3,2)] then (A+B^(T))^(T)=

    Text Solution

    |

  14. If A=[(1,-2,3),(-4,2,5)],B=[(1,3),(-1,0),(2,4)] then 2A+3B'=

    Text Solution

    |

  15. If A=[(1,5,3),(2,4,0),(3,-1,-5)] and B=[(2,-1,0),(0,-2,5),(1,2,0)] the...

    Text Solution

    |

  16. If A+2B=[(2,-4),(1,6)], B^T=[(1,2),(0,-1)] then A=

    Text Solution

    |

  17. If 3A+4B'=[(7,-10,17),(0,6,31)],2B-3A'=[(-1,18),(4,-6),(-5,-7)] then B...

    Text Solution

    |

  18. If A=[(i,0),(0,-i)], then A A'=

    Text Solution

    |

  19. If A=[(0,i),(-i,0)] then "AA"^(T)=

    Text Solution

    |

  20. If A=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then "AA"^(T)=

    Text Solution

    |