Home
Class 12
MATHS
A=[(2,3),(2,-1)]implies8A^(-1)=...

`A=[(2,3),(2,-1)]implies8A^(-1)=`

A

`[(1,3),(2,2)]`

B

`[(1,3),(-2,2)]`

C

`[(-1,3),(2,2)]`

D

`[(1,3),(2,-2)]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -1|9 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

Adj[(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)]implies[(a,b)]=

If [(x,y^(3)),(2,0)]=[(1, 8),(2,0)] then [(x,y),(2,0)]^(-1)=

(1)/(e^(3x))(e^(x)+e^(5x))=a_(0)+a_(1)x+a_(2)x^(2)+....implies2a_(1)+2^(3)a_(3)+2^(5)a_(5)+.....

If the matrix A=[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,alpha)] is of rank 3, then alpha=

(d)/(dx) [(x +1)(x^2+1)(x ^(4) + 1) (x ^(8) +1)]=(15 x ^(p) -16x^q+1) (x-1) ^(-2) implies (p,q)=

""^(15)P_(8)=A+8.""^(14)P_(7 )implies A=

(d)/(dx ) [a Tan ^(-1) x + b log ((x-1)/(x +1)) ] = (1)/(x ^(4) - 1) implies a- 2b =

a) 1s^(2) 2s^(2) 2p^(3) implies (b) 1s^(2) 2s^(2) 2p^(6) 3s^(2) 3p^(6) 3d^(2) implies Z = 20 c) Electronic configuration of He is 1 s^(2) implies Which one contradicts the Aufbau rule ?

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1C MCQ (INVERSE MATRIX)
  1. The inverse of A=[( cos theta, sin theta),(-sin theta, cos theta)] is

    Text Solution

    |

  2. The inverse of [(sec theta, - tan theta),(-tan theta, sec theta)] is

    Text Solution

    |

  3. A=[(2,3),(2,-1)]implies8A^(-1)=

    Text Solution

    |

  4. If A=[(3,4),(7,9)] and AB=I then B=

    Text Solution

    |

  5. If [(a,b),(c,d)] is invertible then

    Text Solution

    |

  6. If [(x,y^(3)),(2,0)]=[(1, 8),(2,0)] then [(x,y),(2,0)]^(-1)=

    Text Solution

    |

  7. If the matrix A is such that A[(-1,2),(3,1)]=[(-4,1),(7,7)] then A=

    Text Solution

    |

  8. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,1)] is

    Text Solution

    |

  9. If [(2,1),(3,2)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then the matrix A=

    Text Solution

    |

  10. If A is a matrix such that ((2,1),(3,2))A((1,1))=((1,1),(0,0)) then A=

    Text Solution

    |

  11. If A [(2,2),(-3,2)],B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^-1=

    Text Solution

    |

  12. If A=[(1,1,1),(1,2,-3),(2,-1,3)] then AdjA=

    Text Solution

    |

  13. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] then adjA=

    Text Solution

    |

  14. If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)], then A^(T)

    Text Solution

    |

  15. Adj[(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)]implies[(a,...

    Text Solution

    |

  16. The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is

    Text Solution

    |

  17. The inverse of [(0,1,0),(1,0,0),(0,0,1)] is

    Text Solution

    |

  18. The matrix having the same matrix as its inverse is

    Text Solution

    |

  19. The inverse of [(3,5,7),(2,-3,1),(1,1,2)] is

    Text Solution

    |

  20. The inverse of [(1,3,3),(1,4,3),(1,3,4)] is

    Text Solution

    |