Home
Class 12
MATHS
Let P and Q be 3xx3 matrices with P!=Q. ...

Let P and Q be `3xx3` matrices with `P!=Q`. If `P^(3)=Q^(3)` and `P^(2)Q=Q^(2)P`, then determinant of `(P^(2)+Q^(2))` is equal to

A

0

B

-1

C

-2

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -1|9 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

A.M of P^2+Q^2 and P^2-Q^2 is….

Find the product : (p^(2) + q^(2))(2p - 3q + 4r)

Find the product: (p^(2)+q^(2))(p-2q+3r)

Find the degree of: pq+p^2q-p^2q^2

Let P and Q be two 2xx2 matrices. Consider the statements (i) PQ=OimpliesO or Q=O or both (ii) PQ=I_(2)impliesP=Q^(-1) (iii) (P+Q)^(2)=P^(2)+2PQ+Q^(2) . Then

Three vectors vec(P), vec(Q), vec(R) obey vec(P) + vec(Q) = vec(R) and P^(2) + Q^(2) = R^(2) the angle between vec(P) & vec(Q) is

Factorise the following p^(4) - 2p^(2)q^(2) + q^(4)

If 2pth term of a G.P is q^(2) and 2qth term is P^(2) , then (p + q)th term is

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1C MCQ (INVERSE MATRIX)
  1. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  2. Let P and Q be two 2xx2 matrices. Consider the statements (i)PQ=Oimp...

    Text Solution

    |

  3. Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2...

    Text Solution

    |

  4. Let A be a square matrix all of whose entries are integers. Then which...

    Text Solution

    |

  5. Let A=((0,0,-1),(0,-1,0),(-1,0,0)). The only correct statement about t...

    Text Solution

    |

  6. [(1,2,3),(2,5,7),(-2,-4,-5)] is the inverse of

    Text Solution

    |

  7. If A=[(1,-2,3),(0,-1,4),(-2,2,1)] then (A^(T))=

    Text Solution

    |

  8. If [(1,0,0),(-1,1,0),(-1,0,1)] is the inverse of [(1,0,0),(1,1,0),(1,0...

    Text Solution

    |

  9. If A=[(0,1,2),(1,2,3),(3,1,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,x),...

    Text Solution

    |

  10. Let A=((1,-1,1),(2,1,-3),(1,1,1)) and (10) B=((4,2,2),(-5,0,alpha),(1,...

    Text Solution

    |

  11. If A=[(0,1,-1),(2,1,3),(3,2,1)] then [A(adjA)A^(-1)]A=

    Text Solution

    |

  12. If A=[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0,0,1)] t...

    Text Solution

    |

  13. If A=[(1,1,1),(2,4,1),(2,3,1)],B=[(2,3),(3,4)] then the matrix BA is

    Text Solution

    |

  14. If S=[(0,1,1),(1,1,1),(1,1,0)],then det of s

    Text Solution

    |

  15. If A=I is 2x2 matrix then det(I+A)=

    Text Solution

    |

  16. If A is a nonzero square matrix of order n with det(I+A)!=0 and A^(3)=...

    Text Solution

    |

  17. If A!=I is an idempotent matrix, then A is a

    Text Solution

    |

  18. If A is a singular matrix then adj A is

    Text Solution

    |

  19. If A is an invertible matrix of order n, then the determinant of adj A...

    Text Solution

    |

  20. If A is a nonsingular matrix of type n Adj(AdjA)=kA, then k=

    Text Solution

    |