Home
Class 12
MATHS
If A=[(a,b),(0,c)] then A^(-1)+(A-aI)(A-...

If `A=[(a,b),(0,c)]` then `A^(-1)+(A-aI)(A-cI)=`

A

`1/(bc)[(c,b),(0,-ab)]`

B

`1/(ac)[(c,-b),(0,a)]`

C

`1/(ac)[(a,-b),(0,c)]`

D

`1/(ab)[(c,-b),(0,-c)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D MCQ (LINEAR EQUATIONS)|53 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -1|9 Videos
  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B MCQ (DETERMINANTS)|189 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

If A=[(0, 1,0),(0, 0,1),(-c,-b,-a)] then A^(3)+aA^(2)+bA+cI is

If S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2)[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)] , then SAS^(-1)=

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.

If f={(a, 1), (b, -2), (c, 3)}, g={(a, -2), (b, 0), (c, 1)} then f^(2)+g^(2)=

If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)],C=[(0,i),(i,0)] then

In triangle ABC, triangle A^(1)B^(1)C^(1) are such that B=B^(1),A+A^(1)=180^(0) then b b^(1)+c c^(1)=

DIPTI PUBLICATION ( AP EAMET)-MATRICES-EXERCISE 1C MCQ (INVERSE MATRIX)
  1. If A=[(cos x, sin x),(-sin x, cos x)] and AdjA=[(1,0),(0,1)] then the ...

    Text Solution

    |

  2. If a is a square matrix, then adjA^(T)-(adjA)^(T)=

    Text Solution

    |

  3. If A, B are two invertible matrices of same type then (AB)^(-1)=

    Text Solution

    |

  4. Which of the following statements is false:

    Text Solution

    |

  5. If A and B are two square matrices such that B=-A^(-1)BA then (A+B)^(2...

    Text Solution

    |

  6. If the matrix A=[(1,2),(3,4)] then I+A+A^(2)+………… up to infinitey

    Text Solution

    |

  7. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a matr...

    Text Solution

    |

  8. A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

    Text Solution

    |

  9. A is a square matrix satisfying the equation A^(2)-4A-5I=O. Then A^(-1...

    Text Solution

    |

  10. If for a matrix A,A^(2)+I=O where I is the indentity matrix, then A=

    Text Solution

    |

  11. If A=[(a,b),(0,c)] then A^(-1)+(A-aI)(A-cI)=

    Text Solution

    |

  12. If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] then A^(2)=

    Text Solution

    |

  13. If A=[(2,1,1),(1,3,1),(1,2,1)] then A^(T)=

    Text Solution

    |

  14. Let A and B be two invertible matrices of order 3×3. If det (ABA^T)=8 ...

    Text Solution

    |

  15. If A = [(a+ib,c+id),(-c+id,a-ib)], a^(2)+b^(2)+c^(2)+d^(2) =1, then fi...

    Text Solution

    |

  16. If A and B are square matrices of order 3 such that detA=-1,detB=3 th...

    Text Solution

    |

  17. The inverse of a symmetric (if it exists) is

    Text Solution

    |

  18. The inverse of a skew symmetric matrix. (if it exists ) is

    Text Solution

    |

  19. The inverse of a skew symmetric matrix of odd order is

    Text Solution

    |

  20. If A is an orthogonal matrix then |A| is

    Text Solution

    |