Home
Class 12
MATHS
A: If [(2,4),(-1,k)] is a nilpotent matr...

A: If `[(2,4),(-1,k)]` is a nilpotent matrix of index 2 then `k=-2`
R: If A is a nilpotent matrix of index 2 then `A^(2)=O`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -3|1 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

Assertio (A) : If [(x,1),(1,0)] is an idempotent matrix then x=0 Reason (R) : If A is an idempotent matrix then A^(2)=A

If A=((2,-2,-4),(-1,3,4),(1,-2,k)) is an idempotent matrix then k =

If A=((2,-2,-4),(-1,3,4),(1,-2,k)) is an idempotent matrix then find k.

If ((1,2,x),(4,-1,7),(2,4,-6)) is a singular matrix, then x=

IF A=[{:(2,4),(-1,k):}] and A^2=0 then find the value of k

If A=[(k,2,3),(-2,0,5),(-3,-5,0)] is a skew symmetric matrix then k =

If A=[(2,x-3,x-2),(3,-2,-1),(4,-1,-5)] is a symmetric matrix then x =

Statement - I, The matrix [(1,-3,-4),(-1,3,4),(1,-3,-4)] is a nilpotent matrix Statement - II : The matrix [(1,1,3),(5,3,4),(-2,-1,-3)] is an idempotent matrix Which of the above Statement(s) is true ?

If (1,4), (-2,3) are conjugate points w.r.t x^(2)+y^(2)=k then k=