Home
Class 12
MATHS
Let A be 2xx2 matrix. Statement : adj(ad...

Let A be `2xx2` matrix. Statement : `adj(adjA)=A` Statement -2: `|adjA|=|A|`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 MCQ (SPECIAL TYPES QUESTIONS) SET -3|1 Videos
  • MATHEMATICAL REASONING [APPENDIX - 4]

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise|150 Videos
  • MEASURES OF DISPERSION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE-2 ( SET -4)|2 Videos

Similar Questions

Explore conceptually related problems

Statement 1 : If A is nxxn matrix then |"adj (adj(adjA))|=|A|^((n-1)^(3)) Statement 2 |"adj A"|=|A|^(n)

Let A be a 2xx2 matrix with non-zero entries and let A^(2)=I , where I is 2xx2 identity matrix . Define Tr(A)= sum of diagonal elements of A and |A| = determinant of matrix A. Statement-1 : Tr(A) = 0 Statement-2 : |A| = 1

Let A be 2xx2 matrix with non zero entries and let A^(2)=I where I is 2xx2 identity matrix. Define Tr(A)= sum of diagonal elements of A and |A|= determinant of matrix A Statement-1 Tr(A)=0 Statement -2 |A|=1

If A is a 4xx4 matrix and detA=-2 then det (AdjA)=

If A is a 3xx3 matrix and det(AdjA)=4 then detA=

If A is a 3xx3 matrix and det A=5 then det (AdjA)=

If A is a 4xx4 matrix and det (AdjA)=-27 then detA=

If a is a square matrix, then adjA^(T)-(adjA)^(T)=

Let A be 3xx3 matrix such A^(2)-5A+7I=0 statement 1 : A^(-1)=(1)/(7)(5I-A) Statement 2 : The polynomial A^(3)-2A^(2)-3A+I can be reduce to 5 (A-4I) then

If A is a nonsingular matrix of type n Adj(AdjA)=kA , then k=