Home
Class 12
MATHS
The volume of the parallelopiped with ed...

The volume of the parallelopiped with edges 2i - 4j + 5k, I - j + k, 3i - 5j + 2k is -8

Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2 (Special Type Questions) SET -B|9 Videos
  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2 (Special Type Questions) SET -C|12 Videos
  • PRODUCTS OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C (Triple product of Vectors|112 Videos
  • PROBABILITY

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET-4|5 Videos
  • PROPERTIES OF TRIANGLES

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) Set-4|10 Videos

Similar Questions

Explore conceptually related problems

The volume of parallelopiped with edges I, I + j, I + j + k is

The ascending order of the following (A) volume of the tertrahedron formed by 4i + 5j + k. - j + k. 3i + 9j + 4k, -4i + 4j + 4k (B) Volume of the parallelopiped with edges 2i + 3j + 4k. I + 2j - 2k, 3i - j + k (C ) |a xx (b xx c)| where a = 2i + 3j - 4k, b = i j + k, c = 4i + 2j + 3k (D) |(a xx b) xx c| where a = i - 2j + k, b = 2i + j - k, c = 4i + 2j + 3k

The volume of the parallelopiped whose edges are given by I + 2j + 3k, 2i + 3j + 2k, 2i + 3j + k is

If the volume of the parallelopiped with eoterminus edges 4i + 5j + k, - j + k and 3i + 9j + pk is 34 cubic units, then the negative value of p =

The volume of the parallelopiped whose coterminal edges are 2i - 3j + 4k, I + 2j - 2k, 3i - j + k is

The vectors 2i - 3j + k, I - 2j + 3k, 3i + j - 2k

The volume of the parallelopiped whose edges are represented by 2i - 3j , i + j - k, 3i - k is

{:(I."Area of the parallelogram with diagonals" 3i + j - 2k. i - 3j + 4k, a.(sqrt(569))/(4)), (II. "Area of the triangle whose adjacent sides are" 3i + 4j "and" i - 3j + 4k, b. (2)/(sqrt(14))),(III. "Volume of parallelopiped whose edges are" 2i - 3j. i + j - k. 3i - k, c. 5 sqrt(3)),(IV. "Projection of" 2i + 3j - 2k "in the direction of" i + 2j + 3k, d. 4),(, e. 2//3)):}"