Home
Class 12
MATHS
Let f(x) =a0+a1x^2+a2x^4+…….+anx^(2n) be...

Let f(x) `=a_0+a_1x^2+a_2x^4+…….+a_nx^(2n)` be a polynomial in `x in R` with `0lta_0lta_1lt……lta_n` then f(x) has

A

neither a maximum nor a minimum

B

only one maximum

C

only one minimum

D

none

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-1 (SPECIAL TYPE QUESTIONS)|14 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-2 (SPECIAL TYPE QUESTIONS)|11 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1D (MEAN VALUE THEOREMS)|28 Videos
  • ADDITION OF VECTORS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|8 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos

Similar Questions

Explore conceptually related problems

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_1 +a_2 + ……a_(2n) = 3^n

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_2/a_1 =

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

If (1 + x +x^2)^n = a_0 =a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_1 +a_3 +a_5 + …..a_(2n - 1) = (3^n - 1)/(2)

If (1 -x + x^2)^n = a_0 +a_1x + a_2x^2+….+a_(2n)x^(2n) then a_0 + a_2 +a_4 + …….+a_(2n) =

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 + a_2 +a_4 + …….= (1+ (-13)^n)/(2)