Home
Class 12
MATHS
C0+4. C1 + 7. C2+…...(n+1) terms =...

`C_0+4. C_1 + 7. C_2+…...(n+1)` terms =

A

`(3n+2)2^n`

B

`(2n+3)3^(n-1)`

C

`(2n+3)2^(n-1)`

D

`(3n+2)3^(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

C_0+3. C_1+5. C_2 +…...(2n+1).C_n=

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)