Home
Class 12
MATHS
(1 +x)^15 = a0 + a1x +…..+a15 x^15 rArr ...

`(1 +x)^15 = a_0 + a_1x +…..+a_15 x^15 rArr sum_(r = 1)^15 r (a_r)/(a_(r - 1)) = `

A

110

B

115

C

120

D

135

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

sum_(r=1)^(10) r. (""^nC_r)/(""^nC_(r-1)) =

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

(1 + x+x^2)^8 = a_0 + a_1x +…….+a_16 x^16 then a_0 - a_2 + a_4 - a_6 + ……..+a_16 =

If n is a positive integer and C_4 = ""^nC_r then find the value of sum_(x = 1)^n r^2 ((C_r)/(C_(r - 1)) )

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

The value of sum_(r = 1)^15 r^2 ((""^15C_r)/(""^15C_(r - 1)) ) of is equal to

(1+x+x^2 + ……+x^p)^n = a_0 + a_1x + a_2 x^2 + ….+a_(np) x^(np) rArr a_1 + 2a_2 + 3a_3 + ……+np .a_(np) =

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. (C1)/(C0)+2. (C2)/(C1)+3. (C3)/(C2)+….+n.(Cn)/(C(n-1))=

    Text Solution

    |

  2. 2.(C2)/(C1)+3.(C3)/(C2)+…...+n. (Cn)/(C(n-1))=

    Text Solution

    |

  3. (1 +x)^15 = a0 + a1x +…..+a15 x^15 rArr sum(r = 1)^15 r (ar)/(a(r - 1)...

    Text Solution

    |

  4. Prove that : If n is a positive integer, then prove that C(0)+(C(1))...

    Text Solution

    |

  5. C0-(C1)/(2)+(C2)/(3)-…...+(-1)^n (Cn)/(n+1)=

    Text Solution

    |

  6. (C0)/(1) + (C2)/(3) + (C4)/(5) + ……+(C16)/(17) =

    Text Solution

    |

  7. C0 + (C1)/(2) + (C2)/(2^2) + (C3)/(2^3)+…..+(Cn)/(2^n)=

    Text Solution

    |

  8. C3//4+C5//6+C7//8+….=

    Text Solution

    |

  9. C0+(C1 x)/(2)+(C2 x^2)/(3)+…...+(Cn x^n)/(n+1)=

    Text Solution

    |

  10. 2.C0 + (2^2)/(2).C1 + (2^3)/(3).C2 + ……+(2^11)/(11).C10 =

    Text Solution

    |

  11. k. C0 + k^2 . (C1)/(2)+k^3. (C2)/(3)+…..+ k^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  12. 2. C0+ 2^2 (C1)/(2)+2^3. (C2)/(3)+…....+2^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  13. (C0)/(2)+(C1)/(3)+(C2)/(4)+…...+(Cn)/(n+2)=

    Text Solution

    |

  14. The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...

    Text Solution

    |

  15. (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=

    Text Solution

    |

  16. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  17. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  18. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  19. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  20. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |