Home
Class 12
MATHS
Prove that : If n is a positive integer,...

Prove that : If n is a positive integer, then prove that
`C_(0)+(C_(1))/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1).`

A

`(2^(n+1)-1)/(n+1)`

B

`(2^n -1)/(n+1)`

C

`(2^n)/(n+1)`

D

`(1)/(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

Prove that : If n is a positive integer then prove that i) C_(0)+C_(1)+C_(2)+……+C_(n)=2^(n)

C_0-(C_1)/(2)+(C_2)/(3)-…...+(-1)^n (C_n)/(n+1)=

Prove the following: C_(0)-(C_(1))/(2)+(C_(2))/(3) - …+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

Prove that : If n is a positive integer and x is any nonzero real number, then prove that C_(0)+C_(1)(x)/(2)+C_(2).(x^(2))/(3)+C_(3).(x^(3))/(4)+….+C_(n).(x^(n))/(n+1)=((1+x)^(n+1)-1)/((n+1)x)

Prove that (C_1)/(2) + (C_3)/(4) + (C_5)/(6) + (C_7)/(8) + …… = (2^n - 1)/(n+ 1)

If n is a positive integer, prove that sum_(r=1)^(n)r^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

Prove that following (C_(1))/(2)+(C_(3))/(4)+(C_(5))/(6)+(C_(7))/(8)+……=(2^(n)-1)/(n+1)

Prove that (C_0)/(1)+ (C_2)/(3) + (C_4)/(5) + (C_6)/(7) +…….= (2^n)/(n+ 1)

Prove the following: C_(0)+(C_(2))/(3) +(C_(4))/(5) + … = (2^(n))/(n+1)

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. 2.(C2)/(C1)+3.(C3)/(C2)+…...+n. (Cn)/(C(n-1))=

    Text Solution

    |

  2. (1 +x)^15 = a0 + a1x +…..+a15 x^15 rArr sum(r = 1)^15 r (ar)/(a(r - 1)...

    Text Solution

    |

  3. Prove that : If n is a positive integer, then prove that C(0)+(C(1))...

    Text Solution

    |

  4. C0-(C1)/(2)+(C2)/(3)-…...+(-1)^n (Cn)/(n+1)=

    Text Solution

    |

  5. (C0)/(1) + (C2)/(3) + (C4)/(5) + ……+(C16)/(17) =

    Text Solution

    |

  6. C0 + (C1)/(2) + (C2)/(2^2) + (C3)/(2^3)+…..+(Cn)/(2^n)=

    Text Solution

    |

  7. C3//4+C5//6+C7//8+….=

    Text Solution

    |

  8. C0+(C1 x)/(2)+(C2 x^2)/(3)+…...+(Cn x^n)/(n+1)=

    Text Solution

    |

  9. 2.C0 + (2^2)/(2).C1 + (2^3)/(3).C2 + ……+(2^11)/(11).C10 =

    Text Solution

    |

  10. k. C0 + k^2 . (C1)/(2)+k^3. (C2)/(3)+…..+ k^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  11. 2. C0+ 2^2 (C1)/(2)+2^3. (C2)/(3)+…....+2^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  12. (C0)/(2)+(C1)/(3)+(C2)/(4)+…...+(Cn)/(n+2)=

    Text Solution

    |

  13. The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...

    Text Solution

    |

  14. (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=

    Text Solution

    |

  15. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  16. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  17. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  18. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  19. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |

  20. C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=

    Text Solution

    |