Home
Class 12
MATHS
2.C0 + (2^2)/(2).C1 + (2^3)/(3).C2 + ……+...

`2.C_0 + (2^2)/(2).C_1 + (2^3)/(3).C_2 + ……+(2^11)/(11).C_10 = `

A

`((3^(11)+1))/(11)`

B

`(3^(11)-1)/(11)`

C

`(3^7 +1)/(7)`

D

`(4^7 -1)/(7)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

Prove that 5.C_(0) +5^(2).(C_(1))/(2) +5^(3).(C_(2))/(3)+…+5^(n+1).(C_(n))/(n+1)=(6^(n+1)-1)/(n+1) Hence show that 5.C_(0) +(5^(2))/(2).C_(1)+(5^(3))/(3).C_(2)+….+(5^(11))/(11).C_(10)=(6^(11)-1)/(11)

With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

With usual notation prove that 2^2.C_0 + 3^2.C_1 + 4^2.C_2 + ……+ (n+2)^2. C_n = (n^2 + 9n + 16) 2^(n-2)

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. C3//4+C5//6+C7//8+….=

    Text Solution

    |

  2. C0+(C1 x)/(2)+(C2 x^2)/(3)+…...+(Cn x^n)/(n+1)=

    Text Solution

    |

  3. 2.C0 + (2^2)/(2).C1 + (2^3)/(3).C2 + ……+(2^11)/(11).C10 =

    Text Solution

    |

  4. k. C0 + k^2 . (C1)/(2)+k^3. (C2)/(3)+…..+ k^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  5. 2. C0+ 2^2 (C1)/(2)+2^3. (C2)/(3)+…....+2^(n+1). (Cn)/(n+1)=

    Text Solution

    |

  6. (C0)/(2)+(C1)/(3)+(C2)/(4)+…...+(Cn)/(n+2)=

    Text Solution

    |

  7. The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...

    Text Solution

    |

  8. (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=

    Text Solution

    |

  9. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  10. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  11. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  12. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  13. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |

  14. C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=

    Text Solution

    |

  15. If Cr denotes the binomial coefficient ""^n Cr then (-1) C0^2 + 2C1^2+...

    Text Solution

    |

  16. If n is odd then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  17. If n is even then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  18. ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...

    Text Solution

    |

  19. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...

    Text Solution

    |

  20. C1//1-C2//2+C3//3-C4//4+…+(-1)^(n-1) Cn//n=

    Text Solution

    |