Home
Class 12
MATHS
Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(...

Show that `(2^(2) *C_(0) )/(1*2)+(2^(3)*C_(1))/(2*3)+(2^(4) *C_(2))/(3*4)+…+(2^(n+2)*C_(n))/((n+1)(n+2)) = (3^(n+2) - 2n-5)/((n+1)(n+2))`
Hence deduce that `(C_(0))/(1.2) -(C_(1))/(2.3) +(C_(2))/(3.4) -…=(1)/(n+2)`

A

`(3^(n+2)-2n-5)/((n+1)(n+2))`

B

`(3^(n+2)+2n+5)/((n+1)(n+2))`

C

`(3^(n+5) -5n +3)/((n+1)^2)`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

C_0 + (C_1)/(2) + (C_2)/(2^2) + (C_3)/(2^3)+…..+(C_n)/(2^n)=

C_0-(C_1)/(2)+(C_2)/(3)-…...+(-1)^n (C_n)/(n+1)=

Prove that (""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))-(""^(2n)C_(3))^(2)+......+(""^(2n)C_(2n))^(2)=(-1)^(n)(""^(2n)C_(n))^2.

C_0 + (C_1)/(2) (4) + (C_2)/(3) (16) + …………..+(C_n)/(n + 1) (2^(2n))

Prove that 5.C_(0) +5^(2).(C_(1))/(2) +5^(3).(C_(2))/(3)+…+5^(n+1).(C_(n))/(n+1)=(6^(n+1)-1)/(n+1) Hence show that 5.C_(0) +(5^(2))/(2).C_(1)+(5^(3))/(3).C_(2)+….+(5^(11))/(11).C_(10)=(6^(11)-1)/(11)

Show that C_(0) +(C_(0) +C_(1))+(C_(0)+C_(1)+C_(2)) +…+(C_(0) +C_(1)+…+C_(n)) =(n+2).2^(n-1)

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...

    Text Solution

    |

  2. (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=

    Text Solution

    |

  3. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  4. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  5. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  6. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  7. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |

  8. C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=

    Text Solution

    |

  9. If Cr denotes the binomial coefficient ""^n Cr then (-1) C0^2 + 2C1^2+...

    Text Solution

    |

  10. If n is odd then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  11. If n is even then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  12. ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...

    Text Solution

    |

  13. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...

    Text Solution

    |

  14. C1//1-C2//2+C3//3-C4//4+…+(-1)^(n-1) Cn//n=

    Text Solution

    |

  15. C0 - 2^3 . C1 +3^2. C2 - …. + (-1)^n (n+1)^2 . (Cn)=

    Text Solution

    |

  16. Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's...

    Text Solution

    |

  17. C0 - C2 + C4 - C6 +….....

    Text Solution

    |

  18. C1 - C3 + C5 - C7 + …...

    Text Solution

    |

  19. The term independent of x in (1+x)^n (1+(1)/(x))^n is

    Text Solution

    |

  20. If a(n)=sum(r=0)^(n)(1)/(""^(n)C(r)) then sum(r=0)^(n)(r)/(""^(n)C(r))...

    Text Solution

    |