A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
BINOMIAL THEOREM
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 VideosBINOMIAL THEOREM
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 VideosBINOMIAL THEOREM
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 VideosAPPLICATIONS OF DIFFERENTIATION
DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 VideosCIRCLE
DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos
Similar Questions
Explore conceptually related problems
DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
- The sum of (n+1) terms of the series (C0)/(2)-(C1)/(3)+(C2)/(4)-(C3)/(...
Text Solution
|
- (C0)/(2)+(C1)/(6)+(C2)/(12)+…..+ (Cn)/((n+1)(n+2))=
Text Solution
|
- Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...
Text Solution
|
- C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=
Text Solution
|
- If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=
Text Solution
|
- If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =
Text Solution
|
- sum(r=0)^(n) (""^n Cr)^2 =
Text Solution
|
- C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=
Text Solution
|
- If Cr denotes the binomial coefficient ""^n Cr then (-1) C0^2 + 2C1^2+...
Text Solution
|
- If n is odd then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=
Text Solution
|
- If n is even then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=
Text Solution
|
- ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...
Text Solution
|
- Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...
Text Solution
|
- C1//1-C2//2+C3//3-C4//4+…+(-1)^(n-1) Cn//n=
Text Solution
|
- C0 - 2^3 . C1 +3^2. C2 - …. + (-1)^n (n+1)^2 . (Cn)=
Text Solution
|
- Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's...
Text Solution
|
- C0 - C2 + C4 - C6 +….....
Text Solution
|
- C1 - C3 + C5 - C7 + …...
Text Solution
|
- The term independent of x in (1+x)^n (1+(1)/(x))^n is
Text Solution
|
- If a(n)=sum(r=0)^(n)(1)/(""^(n)C(r)) then sum(r=0)^(n)(r)/(""^(n)C(r))...
Text Solution
|