Home
Class 12
MATHS
If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 ...

If `(C_0 + C_1) (C_1+C_2)…(C_(n-1) + C_n)=k C_0 C_1 C_2… C_n` then `k=`

A

`((n+1)^n)/(n!)`

B

`((n+1))/(n!)`

C

`((n+2)^n)/(n!)`

D

`((n+2))/(n!)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

((C_0 + C_1)(C_1 + C_2)(C_2 + C_3)………(C_(n-1) + C_n) )/(C_0C_1C_2…C_n)

C_0 C_1+C_1 C_2 + C_2 C_3+…+ C_(n-1) C_n=

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)

C_0C_2 + C_1C_3 +C_2C_4+……..+C_(n-2) C_n =

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

C_0+3. C_1+5. C_2 +…...(2n+1).C_n=

Show that C_0 + (C_0 + C_1) + (C_0 +C_1 + C_2)+……. + (C_0 + C_1 + …+C_n)= (n+2).2^(n-1)

""^n C_0 + ^n C_1 + ^n C_2 + …. + ^n C_n =

Show that C_(0) +(C_(0) +C_(1))+(C_(0)+C_(1)+C_(2)) +…+(C_(0) +C_(1)+…+C_(n)) =(n+2).2^(n-1)

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. Show that (2^(2) *C(0) )/(1*2)+(2^(3)*C(1))/(2*3)+(2^(4) *C(2))/(3*4)+...

    Text Solution

    |

  2. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  3. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  4. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  5. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |

  6. C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=

    Text Solution

    |

  7. If Cr denotes the binomial coefficient ""^n Cr then (-1) C0^2 + 2C1^2+...

    Text Solution

    |

  8. If n is odd then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  9. If n is even then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  10. ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...

    Text Solution

    |

  11. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...

    Text Solution

    |

  12. C1//1-C2//2+C3//3-C4//4+…+(-1)^(n-1) Cn//n=

    Text Solution

    |

  13. C0 - 2^3 . C1 +3^2. C2 - …. + (-1)^n (n+1)^2 . (Cn)=

    Text Solution

    |

  14. Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's...

    Text Solution

    |

  15. C0 - C2 + C4 - C6 +….....

    Text Solution

    |

  16. C1 - C3 + C5 - C7 + …...

    Text Solution

    |

  17. The term independent of x in (1+x)^n (1+(1)/(x))^n is

    Text Solution

    |

  18. If a(n)=sum(r=0)^(n)(1)/(""^(n)C(r)) then sum(r=0)^(n)(r)/(""^(n)C(r))...

    Text Solution

    |

  19. If x+y=1, then sum(r=6)^(n) r ^n Cr x^r . Y^(n-r)=

    Text Solution

    |

  20. If x+y=1 then sum(r=0)^(n) r^2. ^(n) Cr x^r .y^(n-r)=

    Text Solution

    |