Home
Class 12
MATHS
If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)...

If `(1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. = `

A

`(2^n)/((n+1)!)`

B

`(2^(n-1))/(n!)`

C

`(2^(n+1))/(n!)`

D

`(2^n)/((n+2)!)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C (BINOMIAL THEOREM WITH RATIONAL INDEX)|68 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 1|4 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A (BINOMIAL THEOREM WITH INTEGRAL INDEX)|149 Videos
  • APPLICATIONS OF DIFFERENTIATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4 (SPECIAL TYPE QUESTIONS)|15 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 4|4 Videos

Similar Questions

Explore conceptually related problems

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

(1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …. (n-3) terms

(1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

Prove by the method of induction, (1)/( 1.3) + (1)/( 3.5) + (1)/( 5.7) + . . . + (1)/( (2n - 1)(2n + 1)) = (n)/(2 n +1)

If (1)/(1!9!)+(1)/(3!7!)+(1)/(5!5!)+(1)/(7!3!)+(1)/(9!1!)=(2^n)/(10!) , then n=

If (1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1)^(3))+….= lambda((1)/(n)-(1)/(2n^(2))+(1)/(3n^(3))-……) then lambda=

1+ ((1)/(3) + (1)/(3^2) ) + (( 1)/( 3^3) + (1)/( 3^4) + (1)/( 3^5) ) + .... sum of the terms in the n^( th) bracket=

Lt_(n rarr oo)[(1)/(3n+1) + (1)/(3n+2)+…+(1)/(4n)]

If S_(n)={(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+(1)/(3+sqrt(3n))+....+(1)/(n+sqrt(n^(2)))} then {:(" "Lt),(n rarr oo):} S_(n)=

DIPTI PUBLICATION ( AP EAMET)-BINOMIAL THEOREM-EXERCISE 1B (BINOMIAL COEFFICIENTS)
  1. C0 C1+C1 C2 + C2 C3+…+ C(n-1) Cn=

    Text Solution

    |

  2. If (C0 + C1) (C1+C2)…(C(n-1) + Cn)=k C0 C1 C2… Cn then k=

    Text Solution

    |

  3. If (1)/(1!(n-1)!) + (1)/(3!(n-3)!) + (1)/(5!(n-5)!) +…. =

    Text Solution

    |

  4. sum(r=0)^(n) (""^n Cr)^2 =

    Text Solution

    |

  5. C0^2+3.C1^2+5. C2^2+….+(2n+1) .Cn^2=

    Text Solution

    |

  6. If Cr denotes the binomial coefficient ""^n Cr then (-1) C0^2 + 2C1^2+...

    Text Solution

    |

  7. If n is odd then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  8. If n is even then C0^2 - C1^2+C2^2-…....+(-1)^n Cn^2=

    Text Solution

    |

  9. ""^((2n + 1))C0 - ""^((2n+ 1))C1 + ""^((2n + 1))C2 - ……+""^((2n + 1))C...

    Text Solution

    |

  10. Prove that (""^(2n)C(0))^(2)-(""^(2n)C(1))^(2)+(""^(2n)C(2))-(""^(2n...

    Text Solution

    |

  11. C1//1-C2//2+C3//3-C4//4+…+(-1)^(n-1) Cn//n=

    Text Solution

    |

  12. C0 - 2^3 . C1 +3^2. C2 - …. + (-1)^n (n+1)^2 . (Cn)=

    Text Solution

    |

  13. Use the identity (1+x)^(m)(1+x)^(n)=(1+x)^(m+n) to prove Vandermonde's...

    Text Solution

    |

  14. C0 - C2 + C4 - C6 +….....

    Text Solution

    |

  15. C1 - C3 + C5 - C7 + …...

    Text Solution

    |

  16. The term independent of x in (1+x)^n (1+(1)/(x))^n is

    Text Solution

    |

  17. If a(n)=sum(r=0)^(n)(1)/(""^(n)C(r)) then sum(r=0)^(n)(r)/(""^(n)C(r))...

    Text Solution

    |

  18. If x+y=1, then sum(r=6)^(n) r ^n Cr x^r . Y^(n-r)=

    Text Solution

    |

  19. If x+y=1 then sum(r=0)^(n) r^2. ^(n) Cr x^r .y^(n-r)=

    Text Solution

    |

  20. the value of (1)/((81)^n)-^(2n) C1. ((10)^2)/((81)^n)+ ^(2n) C1 ((10)^...

    Text Solution

    |