Home
Class 12
MATHS
If (x^(2)+5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1...

If `(x^(2)+5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3)` then the ascending order of A, B, C is

A

A, B, C

B

B, C, A

C

C, A, B

D

B, A, C

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PARTIAL FRACTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|3 Videos
  • PARTIAL FRACTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|2 Videos
  • PARTIAL FRACTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|3 Videos
  • PARABOLA

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS ) SET-4|4 Videos
  • PERMUTATIONS & COMBINATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 ( SPECIAL TYPE QUESTIONS ) SET -4|10 Videos

Similar Questions

Explore conceptually related problems

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(2)-5x+7)/((x-1)^(3))=(A)/(x-1)+(B)/(x-1)^(2)+(C)/((x-1)^(3)) then A+B+C=

Knowledge Check

  • If (2x^(2)+3x+4)/((x-1)(x^(2)+2))=A/(x-1)+(Bx+C)/(x^(2)+2) then the ascending order of A, B, C is

    A
    A, B, C
    B
    B, C, A
    C
    C, A, B
    D
    B, A, C
  • If (x^(2)+5x+7)/((x-3)^(3))=(A)/((x-3))+(B)/((x-3)^(2))+(C)/((x-3)^(3)), then the equation of the line having slope A and passing through the point (B,C) is

    A
    `x+y-20=0`
    B
    `x-y+20=0`
    C
    `x+y+20=0`
    D
    `x-y-20=0`
  • If (3x+4)/((x+1)^(2)(x-1))=A/(x-1)+B/(x+1)+C/(x+1)^(2) " then " A=

    A
    `-1//2`
    B
    `15//4`
    C
    `7//4`
    D
    `-1//4`
  • Similar Questions

    Explore conceptually related problems

    If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/(x-1)+B/(x-2)+C/(x-3) , then C =

    If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)(x-3) then A=

    If (3x^(2)+x+1)/(x-1)^(4)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3)+D/(x-1)^(4) " then " A+B-C+D=

    If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

    If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.