Home
Class 12
MATHS
Polar of the origin w.r.t. the circle x...

Polar of the origin w.r.t. the circle `x^2+y^2+2ax+2by+c=0` touches the circle `x^(2)+y^(2)=r^(2)` if

A

`c=r(a^(2)+b^(2))`

B

`r=c(a^(2)+b^(2))`

C

`c^(2)=r^(2)(a^(2)+b^(2))`

D

`r^(2)=c^(2)(a^(2)+b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1D(Angle Between Circles)|49 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2(Special Type Questions)|5 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1B(Circle-Line)|142 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

The polar of the point (1,2) w.r.t. the circle x^(2)+y^2-2x-4y-4=0

The polar of the point (4,1) w.r.t. the circle x^(2)+y^(2)-2x-2y-7=0

(prove that) If the polar of the points on the circle x^(2) + y ^(2) = a^(2) with respect to the circle x^(2) + y^(2) = b^(2) touches the circle x^(2) + y^(2) = c^(2) then prove that a, b, c, are in Geometrical progression.

If the polars of points on the circle x^2+y^2=a^2 w.r.t. the circle x^2+y^2=b^2 touch the circle x^2+y^2=c^2 then a, b, c are in

If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=a^(4) then the line touches the circle

The polar of (-a,-2a) w.r.t the circle x^(2)+y^(2)-2ax-3a^(2)=0 touches the parabola

The power of the point (1, 2) w.r.t the circle x^2 + y^2-4x-6y - 12 =0 is

The pole of a straight line with respect to the circle x^(2)+y^(2)=a^(2) lies on the circle x^(2)+y^(2)=9a^(2) . If the straight line touches the circle x^(2)+y^(2)=r^(2) , then

DIPTI PUBLICATION ( AP EAMET)-CIRCLE-Exercise 1C(Pole, Polar)
  1. The locus of poles of tangents to the circle (x-p)^(2)+y^(2)=b^(2) w.r...

    Text Solution

    |

  2. If the polars of points on the circle x^2+y^2=a^2 w.r.t. the circle x^...

    Text Solution

    |

  3. Polar of the origin w.r.t. the circle x^2+y^2+2ax+2by+c=0 touches the...

    Text Solution

    |

  4. A tangent at a point on the circle x^(2)+y^(2)=a^(2) intersects a conc...

    Text Solution

    |

  5. The pole of a straight line with respect to the circle x^(2)+y^(2)=a^(...

    Text Solution

    |

  6. The locus of the point, the chord of contact of which wrt the circle x...

    Text Solution

    |

  7. The locus of the point, whose chord of contact w.r.t the circle x^(2)...

    Text Solution

    |

  8. The condition that the chord of contact of the point (b,c) w.r.t. to t...

    Text Solution

    |

  9. If the pole of the line with respect to the circle x^(2)+y^(2)=c^(2) l...

    Text Solution

    |

  10. A point P is taken on the circle x^(2)+y^(2)=a^(2) and PN, PM are draw...

    Text Solution

    |

  11. If the pole of a line w.r.t to the circle x^(2)+y^(2)=a^(2) lies on th...

    Text Solution

    |

  12. The area of the triangle formed by the tangents from (1,3) to the circ...

    Text Solution

    |

  13. The locus of the poles of the line ax+by+c=0 w.r.t a system of circles...

    Text Solution

    |

  14. The locus of the poles of the line 2x+3y-4=0 w.r.t. the circle x^(2)+y...

    Text Solution

    |

  15. The inverse point of (1,-1) with respect to the circle x^(2)+y^(2)=4, ...

    Text Solution

    |

  16. The inverse point of origin w.r.t. the circle x^(2)+y^(2)+2gx+2fy+c=0 ...

    Text Solution

    |

  17. The inverse point of (1,2) origin w.r.t. the circle x^(2)+y^(2)-4x-6y+...

    Text Solution

    |

  18. The inverse point of (1,2) w.r.t. the circle x^(2)+y^(2)=25, is (5,k) ...

    Text Solution

    |

  19. The inverse point of (x(1),y(1)) w.r.t. the circle x^(2)+y^(2)=a^(2)" ...

    Text Solution

    |

  20. For the circle x^(2)+y^(2)-6x+8y-1=0, points (2,3), (-2,-1) are

    Text Solution

    |