Home
Class 12
MATHS
The condition that the circles x^(2)+y^(...

The condition that the circles `x^(2)+y^(2)+2ax+c=0, x^(2)+y^(2)+2by+c=0` may touch each other is

A

`ab gt 0, c lt 0`

B

`ab lt 0, c gt 0`

C

`ab=0, c gt 0`

D

`ab=0 ,c lt 0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2(Special Type Questions)|5 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Set 2|4 Videos
  • CIRCLE

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 1C(Pole, Polar)|107 Videos
  • BINOMIAL THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) SET - 4|4 Videos
  • COMPLEX NUMBERS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS) (SET - 4)|5 Videos

Similar Questions

Explore conceptually related problems

The condition that the circles x^(2)+y^(2)+2ax+2by+c=0, x^(2)+y^(2)+2bx+2ay+c=0 to touch each other is

Show that the circles x^(2) +y^(2) + 2ax + c=0 and x ^(2) + y^(2) + 2by + c=0 to touch each other if (1)/(a^(2)) + (1)/( b^(2)) = (1)/( c )

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

Show that the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other if 1/(a^(2))+1/(b^(2))=1/c

Show that the circles x^2 +y^2 + 2ax + c = 0 and x^2 + y^2 + 2by + c = 0 touch each other if 1//a^2 + 1//b^2 = 1//c.

Show that the circles x^(2) + y^(2) -6x -2y + 1=0 , x ^(2) + y^(2) + 2x -8y + 13 =0 touch each other find the point of contact and the equation of the common tangent at their point of contact.

The circles x^(2) +y^(2) + 2ax +c =0 and x^(2) +y^(2) +2bx +c =0 have no common tangent if

Show that the circles S=-x^(2) + y^(2) -2x-4y -20 =0 , S' = x^(2) +y^(2) +6x+ 2y -90 =0 touch each other internally . Find their point contact.

DIPTI PUBLICATION ( AP EAMET)-CIRCLE-Exercise 1D(Angle Between Circles)
  1. Consider the circle x^(2)+(y-1)^(2)=9, (x-1)^(2)+y^(2)=25. They are su...

    Text Solution

    |

  2. If the two circles (x-2)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-10x+2y+17...

    Text Solution

    |

  3. The condition that the circles x^(2)+y^(2)+2ax+c=0, x^(2)+y^(2)+2by+c=...

    Text Solution

    |

  4. Let A and B be any two point on each of the circles x^(2) +y^(2) -8x ...

    Text Solution

    |

  5. The circles x^(2)+y^(2)-10x+16=0 and x^(2)+y^(2)=r^(2) intersect each ...

    Text Solution

    |

  6. If the two circles (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0...

    Text Solution

    |

  7. If the circles x^(2)+y^(2)-4x+6y+8=0, x^(2)+y^(2)-10x-6y+14=0 touch ea...

    Text Solution

    |

  8. The point of contact of the circle x^(2)+y^(2)+2x+2y+1=0 and x^(2)+y^(...

    Text Solution

    |

  9. The point at which the circles x^(2)+y^(2)-4x-4y+7=0 and x^(2)+y^(2)-1...

    Text Solution

    |

  10. If the circle x^(2)+y^(2)+2ax+4ay-3a^(2)=0 and x^(2)+y^(2)-8ax-6ay+7a^...

    Text Solution

    |

  11. If the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)-6x-8y+9=0 touch external...

    Text Solution

    |

  12. If the circles (x-a)^(2)+(y-b)^(2)=r^(2), (x-b)^(2)+(y-a)^(2)=r^(2) to...

    Text Solution

    |

  13. The condition that the circles x^(2)+y^(2)+2ax+c=0, x^(2)+y^(2)+2by+c=...

    Text Solution

    |

  14. The condition that the circles x^(2)+y^(2)+2ax+2by+c=0, x^(2)+y^(2)+2b...

    Text Solution

    |

  15. The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each ...

    Text Solution

    |

  16. The equation of the circle with centre (-1,1) and touch the circle x^(...

    Text Solution

    |

  17. The equation of the circle radius is 5 and which touches the circle x^...

    Text Solution

    |

  18. The equation to the circle whose radius is 3 and which touches interna...

    Text Solution

    |

  19. The equation of the circle whose radius is 3 and which touches the cir...

    Text Solution

    |

  20. The centre of the circle passing through the points (0,0), (1,0) and t...

    Text Solution

    |