Home
Class 12
MATHS
The eccentric angles of the extremities ...

The eccentric angles of the extremities of latusrecta of the ellipse `x^(2)//a^(2)+y^(2)//b^(2)=1` is

A

`Tan^(-1)(pmb/(ae))`

B

`Sin^(-1)(pmb/(ae))`

C

`Cos^(-1)(pmb/(ae))`

D

`Sec^(-1)(pmb/(ae))`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|24 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|2 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • EAMCET - 2016 TS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Questions|80 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos

Similar Questions

Explore conceptually related problems

IF alpha,beta are the eccentric angles of the extremities of a focal chord of the ellipse x^2/a^2+y^2/b^2=1 . Then show that e cos""(alpha+beta)/2=cos""(alpha-beta)/2

The pole of line x = a/e with respect to the ellipse x^(2)//a^(2)+y^(2)//b^(2)=1 is

Knowledge Check

  • The eccentric angles of the ends of L.R. of the ellipse (x^(2)/(a^(2))) + (y^(2)/(b^(2))) = 1 is

    A
    `tanA^(-1)(pm(b)/(ae))`
    B
    `sin^(-1)(pm(b)/(ae))`
    C
    `cos^(-1)(pm(b)/(ae))`
    D
    `sec^(-1)(pm(b)/(ae))`
  • If alpha, beta are the eccentric angles of the extremities of a focal chord of the ellipse x^(2)/16+y^(2)/9, " then "tan""alpha/2tan""beta/2=

    A
    `(sqrt(5)+4)/(sqrt(5)-4)`
    B
    `9/23`
    C
    `(sqrt(5)-4)/(sqrt(5)+4)`
    D
    `(8sqrt(7)-23)/9`
  • The eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(25) =1 is

    A
    `4/5`
    B
    `3/5`
    C
    `4/3`
    D
    `3/4`
  • Similar Questions

    Explore conceptually related problems

    Show that the tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at points whose eccentric angles differ by (pi)/(2) intersect on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=2

    The eccentricity of the ellipse x^(2)/9+y^(2)/16=1 is

    If the normal at the end of latus rectum of an ellipse x^(2)//a^(2)+y^(2)//b^(2)=1 of eccentricity e passes through one end of the minor axis then e^(4)+e^(2)=

    The locus of the point of intersection of two tangents to the ellipse x^(2)//a^(2)+y^(2)//b^(2)=1 which make an angle 60^(@) with one another is

    Find the eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(9)=1