Home
Class 12
MATHS
If f(x)=sqrt(2x^2-6x+5)+sqrt(2x^2-40 x+...

If `f(x)=sqrt(2x^2-6x+5)+sqrt(2x^2-40 x+218)`, then the minimum value of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin(2x)+5 then the minimum value of f(x) is

If f(x)=sin(2x)+5 then the minimum value of f(x) is

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1), then the maximum value of (f(x))^(2) is

Find the minimum value of f(X)=x^(2)-5x+6 .

f(x)=(sqrt(x^(2)+x-6))/(x^(2)-4)