Home
Class 11
MATHS
If y=log[x+sqrt((1+x^2)]], prove that sq...

If `y=log[x+sqrt((1+x^2)]],` prove that `sqrt((1+x^2)) (dy)/(dx)=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^(2)-1)(dy)/(dx)=1/2y

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y .

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .