Home
Class 11
MATHS
3^(log3log sqrtx) -log x + (log x)^2 - 3...

`3^(log_3log sqrtx) -log x + (log x)^2 - 3 =0`

Text Solution

Verified by Experts

`3^(log_3 logsqrtx) - logx +(logx)^2 - 3 = 0`
We know, `a^(log_a b) = b`, so our equation becomes,
`=>logsqrtx - logx +(logx)^2 - 3 = 0`
`=>1/2logx - logx +(logx)^2 - 3 = 0`
`=>(logx)^2 - logx/2 - 3 = 0`
`=>2(logx)^2 - logx - 6 = 0`
`=>2(logx)^2 - 4logx+3logx - 6 = 0`
`=>(2logx+3)(logx - 2) = 0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

3^(log_(3)log sqrt(x))-log x+log^(2)x-3=0

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

int frac{log (3x)}{xlog(9x)} dx = ............. (A) log(3x) - log(9x) +c (B) log(x) - log(3) log(log 9x) + c (C) log 9 - (log x)log(log 3x) +c (D) log(x) + log(3) log(log 9x) + c

3^(log x)-2^(log x)=2^(log x+1)-3^(log x-1), where base is 10,

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .