Home
Class 12
MATHS
If A1, A2, , A(2n-1) are n skew-symmet...

If `A_1, A_2, , A_(2n-1)` are n skew-symmetric matrices of same order, then `B=sum_(r=1)^n(2r-1)(A^(2r-1))^(2r-1)` will be (a) symmetric (b) skew-symmetric (c) neither symmetric nor skew-symmetric (d)data not adequate

Promotional Banner

Similar Questions

Explore conceptually related problems

If A_1, A_2, , A_(2n-1)a r en skew-symmetric matrices of same order, then B=sum_(r=1)^n(2r-1)(A^(2r-1))^(2r-1) will be i) symmetric ii) skew-symmetric iii) neither symmetric nor skew-symmetric iv) data not adequate

If A_(1),A_(2),A_(2n-1) are n skew-symmetric matrices of same order,then B=sum_(r=1)^(r=1)(2r-1)(A^(2r-1))^(2r-1) will be (a) symmetric (b) skew-symmetric (c) neither symmetric nor skew-symmetric (d) neither adequate

If A_(1), A_(3), ... , A_(2n-1) are n skew-symmetric matrices of same order, then B =sum_(r=1)^(n) (2r-1) (A_(2r-1))^(2r-1) will be

If A_(1), A_(3), ... , A_(2n-1) are n skew-symmetric matrices of same order, then B =sum_(r=1)^(n) (2r-1) (A_(2r-1))^(2r-1) will be

If A_1, A_2, , A_(2n-1)a r en skew-symmetric matrices of same order, then B=sum_(r=1)^n(2r-1)(A^(2r-1))^(2r-1) will be symmetric skew-symmetric neither symmetric nor skew-symmetric data not adequate

If A and B are two skew symmetric matrices of order n then

If A and B are two skew symmetric matrices of order n then

If A and B are two skew symmetric matrices of same order, then AB is symmetric matrix if ……..

If A and B are two skew symmetric matrices of same order then AB is symmetric matrix if __________