Home
Class 10
MATHS
" (i) "(sqrt(2)-1)/(sqrt(2)+1)=a+b sqrt(...

" (i) "(sqrt(2)-1)/(sqrt(2)+1)=a+b sqrt(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find values of a and b when (sqrt(2)-1)/(sqrt(2)+1)=a+b sqrt(2)

Remove the irrationality in the denominator a. sqrt((sqrt(2)-1)/(sqrt(2)+1)) b. 1/(1+sqrt(2)+sqrt(3))

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

Remove the irrationality in the denominator a.sqrt((sqrt(2)-1)/(sqrt(2)+1)) b.(1)/(1+sqrt(2)+sqrt(3))

In each of the following determine rational number a and b:(sqrt(3)-1)/(sqrt(3)+1)=a-b sqrt(3)( ii) (4+sqrt(2))/(2+sqrt(2))=a-sqrt(b)

If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value of a^(2)+ab+b^(2) is

If a=(sqrt(2)+1)/(sqrt(2)-1),b=(sqrt(2)-1)/(sqrt(2)+1), prove that a^(2)+ab+b^(2)=35

A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is another point on the circle such that are length A B=pi/2 units. Then, the coordinates of B can be (a) (1/(sqrt(2)),-1/sqrt(2)) (b) (-1/(sqrt(2)),1/sqrt(2)) (c) (-1/(sqrt(2)),-1/(sqrt(2))) (d) none of these

A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is another point on the circle such that arc length A B=pi/2 units. Then, the coordinates of B can be (a) (1/(sqrt(2)),-1/sqrt(2)) (b) (-1/(sqrt(2)),1/sqrt(2)) (c) (-1/(sqrt(2)),-1/(sqrt(2))) (d) none of these