Home
Class 12
MATHS
Let f: R -> R be a differentiable functi...

Let `f: R -> R` be a differentiable function such that `f(0)=0, f((pi/2))=3` and `f'(0)=1` If `g(x) = int_x^(pi/2) [f'(t) cosec t- cot t cosec t f(t)] dt` for `x in (0, pi/2]` then `lim_(x->0) g(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a differentiable function such that f(0),f((pi)/(2))=3 and f'(0)=1. If g(x)=int_(x)^((pi)/(2))[f'(t)csc t-cot t csc tf(t)]dt for x in(0,(pi)/(2)] then lim_(x rarr0)g(x)=

Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=3a n df^(prime)(0)=1. If g(x)=int_x^(pi/2)[f^(prime)(t)cos e ct-cottcos e ctf(t)]dt for x(0,pi/2], then (lim)_(x -> 0)g(x)=

Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=3a n df^(prime)(0)=1. If g(x)=int_x^(pi/2)[f^(prime)(t)cos e ct-cottcos e ctf(t)]dt for x(0,pi/2], then (lim)_(x -> 0)g(x)=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for