Home
Class 12
MATHS
By using the properties of definite int...

By using the properties of definite integrals, evaluate the integrals`int_0^ (pi/4) log(1+tanx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \) using the properties of definite integrals, we can follow these steps: ### Step 1: Set up the integral Let \( I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \). ### Step 2: Use the substitution \( x = \frac{\pi}{4} - t \) Now, we will change the variable in the integral. Let \( t = \frac{\pi}{4} - x \). Then, \( dx = -dt \) and when \( x = 0 \), \( t = \frac{\pi}{4} \) and when \( x = \frac{\pi}{4} \), \( t = 0 \). Thus, we can rewrite the integral: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_(0)^( pi)log(1+cos x)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^(4)|x-1|dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))cos^(2)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(2log sin x-log sin2x)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^( pi)(xdx)/(1+sin x)

By using the properties of definite integrals, evaluate the integrals int_(0)^(2 pi)cos^(5)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^(1)x(1-x)^(n)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

By using the properties of definite integrals, evaluate the integrals int_(-5)^(5)|x+2|dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(cos^(5)xdx)/(sin^(5)+cos^(5)x)