Home
Class 10
MATHS
(1)/(x+1)+(2)/(x+2)=(4)/(x+4)...

(1)/(x+1)+(2)/(x+2)=(4)/(x+4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (i) x(x+1)+(x+2)(x+3)=42 (ii) (1)/(x+1)-(2)/(x+2)=(3)/(x+3)-(4)/(x+4)

Obtain the sum of (1)/(x+1)+(2)/(x^(2)+1)+(4)/(x^(4)+1)+...+ (2^(n))/(x^(2^(n))+1)

Obtain the sum of (1)/(x+1)+(2)/(x^(2)+1)+(4)/(x^(4)+1)+......+(2^(n))/(x^(2^(n))+1)

The expression (1)/(x-1)-(1)/(x+1)-(2)/(x^(2)+1)-(4)/(x^(4)+1) is equal to (8)/(x^(8)+1)( b) (8)/(x^(8)-1)( c) (8)/(x^(7)-1) (d) (8)/(x^(7)+1)

Prove by mathematical induction that (1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1))) where , |x|ne 1 and n is non - negative integer.

Prove by mathematical induction that (1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1))) where , |x|ne 1 and n is non - negative integer.

Find the values of x for which f(x)=((2x-1)(x-1)^(2)(x-2)^(3))/((x-4)^(4))>0

Find the products: (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/(x^(2)))(x^(4)+(1)/(x^(4)))

Find the continued product: (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/(x^(2)))(x^(4)+(1)/(x^(4)))