Home
Class 12
MATHS
(i)A^2-B^2!=(A+B)(A-B) Explain why in ge...

`(i)A^2-B^2!=(A+B)(A-B)` Explain why in general(0 A? -8^@ = (A + B) (A - B),

Promotional Banner

Similar Questions

Explore conceptually related problems

Explain eohy in general(ii) (A+-B)^(2)!=A^(2)+B^(2)+-2AB

If A and B are square matrices of the same order, explain, why in general (A+B)^2!=A^2+2A B+B^2 (ii) (A-B)^2!=A^2-2A B+B^2 (iii) (A+B)(A-B)!=A^2-B^2 .

If A and B are square matrices of the same order,explain,why in general (A+B)^(2)!=A^(2)+2AB+B^(2)( ii) (A-B)^(2)!=A^(2)-2AB+B^(2)( iii) (A+B)(A-B)!=A^(2)-B^(2)

If A=[{:(,3,2),(,0,5):}] and B=[{:(,1,0),(,1,2):}] , find : (i) (A+B) (A-B) (ii) A^2-B^2 (iii) Is (A+B) (A-B) =A^2-B^2?

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (i) (A+B)' =A'+B', (ii) (A-B)'=A'-B'

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (i) (A+B)' =A'+B', (ii) (A-B)'=A'-B'

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (i) (A+B)' =A'+B', (ii) (A-B)'=A'-B'

(i) If a+b = 8 and ab = 15 , find a^2 + b^2 .

if set B ={1,4,8,16,32,64} then which of the following is true? If not then mention why? (i) 4 in B (ii) 16 in B (iii) 2 in B ( iv) 164 in B