Home
Class 12
MATHS
" If "log(10)((x^(3)-y^(3))/(x^(3)+y^(3)...

" If "log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2," then "(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If log _(10)((x^(3)-y^(3))/(x^(3)+y^(3))) = 2 , then show that (dy)/(dx) = (-99x^(2))/(101y^(2))

If y=log x^(3), then (dy)/(dx)=

If y^(3) - 3y^(2) x=x^(3) +3x^(2) y,then (dy)/(dx)=

If log_(10)(frac{x^3 -y^3}{x^3+y^3}) =2 , then show that dy/dx = (-99x^2)/(101y^2)

(dy)/(dx)=(y^(3)-2x^(2)y)/(x^(3))

y=3^(log_(9)(1+tan^(2)x)) then (dy)/(dx)=

lf_(log_(10)(x^(3)+y^(3))-log_(10)(x^(2)-xy+y^(2))+log_(10)(x^(3)-y^(3))-log_(10)(x^(2)+xy+y^(2)))=log_(10)221 then

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy) =0,y>=0 is

If log_(10) (frac{ x^3 - y^3}{ x^3 + y^3} ) = 2 , show that dy/dx = frac{-99x^2}{101y^2}

If log ((x+y)/(3))=(1)/(2)(logx+logy)," then "(dy)/(dx)=