Home
Class 12
MATHS
If int0^ (pi/2) (dx)/(1+sinx+cosx)=In 2,...

If `int_0^ (pi/2) (dx)/(1+sinx+cosx)=In 2`, then the value of `int_0^(pi/2) sinx/(1+sinx+cosx)dx` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2) sinx/(sinx + cosx) dx

Write the value of int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

Given int_0^(pi/2)(dx)/(1+sinx+cosx)=log2. Then the value of integral int_0^(pi/2)(sinx)/(1+sinx+cosx)dx is equal to (a) 1/2log2 (b) i spi/2-log2 pi/4-1/2log2 (d) pi/2+log2

int_0^(pi/2)frac(sinx)(sinx+cosx)dx

evaluate int_0^(pi/2) sinx/(sinx+cosx) dx

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int_0^(pi/2) cosx/(1+sinx)dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi/2) |sinx - cosx |dx is equal to

Evaluate int_0^(pi/2)sinx/(sinx+cosx)dx.