Home
Class 12
MATHS
IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I...

`IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx` `I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n` `I_1=I_2> I_3` (b) `I_3> I_1=I_2` `I_1=I_2=I_3` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

If I_(1)=int_(0)^((pi)/(2))(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^((pi)/(2))(sin^(2)x)/(1+sin^(2)x)dxI_(3)=int_(0)^((pi)/(2))(1+2cos^(2)x sin^(2)x)/(4+2cos^(2)x sin^(2)x)dx, then I_(1)=I_(2)>I_(3)(b)I_(3)>I_(1)=I_(2)I_(1)=I_(2)=I_(3)(d) none of these

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

(i) int_0^pi (sin^2 x/2- cos^2 x/2) dx (ii) int_0^(pi//2) (sin^2x)/(1+cosx)^2 dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then