Home
Class 12
MATHS
[log(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2]...

[log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2],[(x)/(y)],[-(y)/(x)],[-(x)/(y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2 , then (dy)/(dx)=

IF log _(10)""((x^(3)-y^(3))/(x^(3)+y^(3)))=2 then (dy)/(dx)=

IF log _(10)""((x^(3)-y^(3))/(x^(3)+y^(3)))=2 then (dy)/(dx)=

If log_(10)((x^(3) - y^(3))/ (x^(3)+y^(3))) = 2 , then (dy)/(dx)=

If log _(10)((x^(3)-y^(3))/(x^(3)+y^(3))) = 2 , then show that (dy)/(dx) = (-99x^(2))/(101y^(2))

If log_(10)(x^(3)+y^(3))-log_(10)(x^(2)+y^(2)-xy) =0,y>=0 is

lf_(log_(10)(x^(3)+y^(3))-log_(10)(x^(2)-xy+y^(2))+log_(10)(x^(3)-y^(3))-log_(10)(x^(2)+xy+y^(2)))=log_(10)221 then

If log_(10) (x^3+y^3)-log_(10) (x^2+y^2-xy) =0, y>=0 is

3^(x)+3^(y)+3^(z)+3^(t)=24,log_(z)x+log_(z)t=y,(x)/(x^(4)+y^(2))+(y)/(x^(2)+y^(4))=(1)/(xy)

If log_(5)(3^(x)-4^(y))=3 and 3^((x)/(2))-2^(y)=5, then (x)/(y) is equal to