Home
Class 12
MATHS
" If "y=[log(x+sqrt(x^(2)+1))]^(2)," the...

" If "y=[log(x+sqrt(x^(2)+1))]^(2)," then show that "(1+x^(2))y_(2)+xy_(1)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If y= [Log(x+sqrt(x^2+1))]^2 then show that (x^2+1)y_2+xy_1=0

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

y=[log(x+sqrt(x^2+1))]^2 then prove that (x^2+1)y_2+x y_1=2

y=[log(x+sqrt(x^2+1))]^2 then prove that (x^2+1)y_2+x y_1=2

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=