Home
Class 12
MATHS
y=cos^(-1)(a+b cos x)/(b+a cos x)(b>a)...

y=cos^(-1)(a+b cos x)/(b+a cos x)(b>a)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : y="cos"^(-1)(a+b cos x)/(b+a cos x)(b gt a)

If y=sin^(-1)((a+b cos x)/(b+a cos x)), prove that (dy)/(dx)=-(sqrt(b^(2)-a^(2)))/(b+a cos x)

Differentiate sin^(-1)((a+b cos x)/(b+a cos x)),b>a with respect to x:

(d)/(dx ) {Cos^(-1) ((a+b cos x )/(a cos x +b)) (a lt b )=

If y=(1)/(sqrt(a^(2)-b^(2)))cos^(-1)((a cos x+b)/(a+b cos x)), then (d^(2)y)/(dx^(2))=(i)(b sin x)/((a+b cos x)^(2))( ii) -(b sin x)/((a+b cos x)^(2))( iii) (b cos x)/((a+b cos x)^(2))( iii) -(b cos x)/((a+b cos x)^(2))

Prove that : "cos"^(-1) ((b+a "cos"x)/(a+b "cos"x)) =2"tan"^(-1)(sqrt((a-b)/(a+b)) "tan" x/2)

Find the derivatives of the function cos ^(-1) (( b + a cos x )/( a + b cos x )), (a gt 0, b gt 0)

If y= tan^(-1)((a cos x-b sin x)/(b cos x+a sin x))" show that, " (dy)/(dx)= -1 .