Home
Class 12
MATHS
[" If "alpha,beta" are the roots of "ax^...

[" If "alpha,beta" are the roots of "ax^(2)+bx],[" (i) "lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

If alpha, beta are the zeroes of ax^(2)+bx+c , then evaluate : lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2) .

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha, beta are the zeroes of ax^2+ bx +c , then evaluate : lim_(x rarr beta)(1-cos (ax^2 +bx +c) )/((x-beta)^2) .

If alpha and beta be the roots of ax^(2)+bx+c=0andL=underset(xrarrbeta)"lim"(1-cos(ax^(2)+bx+c))/(x-beta)^(2) , then - L = ?

If alpha and beta be the roots of ax^(2)+bx+c=0andL=underset(xrarrbeta)"lim"(1-cos(ax^(2)+bx+c))/(x-beta)^(2) , then - if L=0 , then -

If alpha and beta are the roots of x^2+bx+c=0 Find lim_(x to beta)(e^(2(x^2+bx+c))-1-2(x^2+bx+c))/(x-beta)^2

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to