Home
Class 12
MATHS
tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=sin^(-1)...

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=sin^(-1)(1)/(sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=tan^(-1)((1)/(2))

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)

Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2)) .