Home
Class 12
MATHS
A function h is defined as follows : f...

A function h is defined as follows :
for `x gt 0, h(x)=x^(7)+2x^(5)-12x^(3)+15x-2`
for `x le0, h(x)=x^(6)-3x^(4)+2x^(2)-7x-5`
What is the value of `h(-1)`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( h(-1) \), we first need to determine which part of the function definition applies to \( x = -1 \). ### Step 1: Identify the correct function definition Since \( -1 \leq 0 \), we use the definition of \( h(x) \) for \( x \leq 0 \): \[ h(x) = x^6 - 3x^4 + 2x^2 - 7x - 5 \] ### Step 2: Substitute \( x = -1 \) into the function Now, we substitute \( x = -1 \) into the equation: \[ h(-1) = (-1)^6 - 3(-1)^4 + 2(-1)^2 - 7(-1) - 5 \] ### Step 3: Calculate each term - Calculate \( (-1)^6 \): \[ (-1)^6 = 1 \] - Calculate \( -3(-1)^4 \): \[ -3(-1)^4 = -3 \cdot 1 = -3 \] - Calculate \( 2(-1)^2 \): \[ 2(-1)^2 = 2 \cdot 1 = 2 \] - Calculate \( -7(-1) \): \[ -7(-1) = 7 \] - The last term is \( -5 \). ### Step 4: Combine all the terms Now, we combine all the calculated values: \[ h(-1) = 1 - 3 + 2 + 7 - 5 \] ### Step 5: Simplify the expression Now, we simplify: \[ h(-1) = (1 - 3) + 2 + 7 - 5 \] \[ = -2 + 2 + 7 - 5 \] \[ = 0 + 7 - 5 \] \[ = 7 - 5 = 2 \] ### Conclusion Thus, the value of \( h(-1) \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x ^(2) -7x =30 and x gt0, what is the value of x -5 ?

If h(x) = sqrt(x^(2)+x-4) and g(x)=sqrt(5x) , what is the value of h(g(6)) ?

h(x)=2^x The function h is defined above. What is h(5) − h( 3) ?

If function h is defined by h(x)= ax^(2)-7 and h(-3)=29 , what is h((1)/(2)) ?

Which of the following is an odd function? I. f(x)=3x^(3)+5 II. g(x)=4x^(6)+2x^(4)-3x^(2) III. h(x)=7x^(5)-8x^(3)+12x

Let a function of 2 variables be defined by h(x, y)=x^(2)+3xy-(y-x) , what is the value of h(5, 4) ?

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

(x^2-7x+12)/(2x^2-4x+5)>0

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is