Home
Class 12
MATHS
If 5-(2)/(x)=2-(5)/(x), then |(x)/(3)|=...

If `5-(2)/(x)=2-(5)/(x),` then `|(x)/(3)|=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5 - \frac{2}{x} = 2 - \frac{5}{x} \), we will follow these steps: ### Step 1: Rearrange the equation Start by moving all terms involving \( x \) to one side and the constant terms to the other side. \[ 5 - 2 = \frac{2}{x} - \frac{5}{x} \] ### Step 2: Simplify both sides This simplifies to: \[ 3 = \frac{2 - 5}{x} \] ### Step 3: Combine the fractions The right-hand side can be simplified further: \[ 3 = \frac{-3}{x} \] ### Step 4: Cross-multiply To eliminate the fraction, we can cross-multiply: \[ 3x = -3 \] ### Step 5: Solve for \( x \) Now, divide both sides by 3: \[ x = -1 \] ### Step 6: Find \( \left| \frac{x}{3} \right| \) Now we need to find \( \left| \frac{x}{3} \right| \): \[ \left| \frac{-1}{3} \right| = \frac{1}{3} \] ### Final Answer Thus, the value of \( \left| \frac{x}{3} \right| \) is: \[ \frac{1}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(x^2-1)/(2x+5)<3

(x^2-1)/(2x+5)<3

If 2^(x).9^(2x+3) = 7^(x+5) , then x =

If x^((3)/(2))=27, x^((5)/(2))=

If |(3x,4),(5,x)|=|(4,-3),(5,-2)| , then x =

Solve the equation : (5)/(2-x)+(x-5)/(x+2)+(3x+8)/(x^(2)-4)=0

If X[(-7,2),(0,-5)]=[(2,-3),(5,4)] ,then X

Solve : (x+3)/(7)-(3x-5)/(5)=(2x-5)/(3)-25

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

" Solve : (3x)/(4)-(2x+5)/(3)=(5)/(2)