Home
Class 12
MATHS
If cos x=0.32, then what is the value of...

If `cos x=0.32`, then what is the value of `sinx tanx`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin x \tan x \) given that \( \cos x = 0.32 \), we can follow these steps: ### Step 1: Calculate \( \sin x \) We know the relationship between sine and cosine: \[ \sin^2 x + \cos^2 x = 1 \] From this, we can express \( \sin x \) as: \[ \sin x = \sqrt{1 - \cos^2 x} \] Substituting the value of \( \cos x \): \[ \sin x = \sqrt{1 - (0.32)^2} \] Calculating \( (0.32)^2 \): \[ (0.32)^2 = 0.1024 \] Now substituting this back: \[ \sin x = \sqrt{1 - 0.1024} = \sqrt{0.8976} \] Calculating \( \sqrt{0.8976} \): \[ \sin x \approx 0.9474 \] ### Step 2: Calculate \( \tan x \) The tangent function is defined as: \[ \tan x = \frac{\sin x}{\cos x} \] Substituting the values we have: \[ \tan x = \frac{0.9474}{0.32} \] Calculating this gives: \[ \tan x \approx 2.9606 \] ### Step 3: Calculate \( \sin x \tan x \) Now we can find \( \sin x \tan x \): \[ \sin x \tan x = 0.9474 \times 2.9606 \] Calculating this product: \[ \sin x \tan x \approx 2.81 \] ### Final Answer Thus, the value of \( \sin x \tan x \) is approximately \( 2.81 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If cosx=tany ,cosy=tanz ,cosz=tanx , then the value of sinx is (a) 2cos18^0 (b) cos18^0 (c) sin18^0 (d) 2sin18^0

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

If 0lexle360^(@), tan xlt0 and cos x tanx gt0 , then which of the following is a possible value for x?

If cos^(-1)|sinx|gesin^(-1)|sinx| , then the number of integral values of x in the interval x in [0, 3pi] are

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c then the value of p sinx+rcosx can be