Home
Class 12
MATHS
If x+y=2k-1, and x^(2)+y^(2)=9-4k+2k^(2)...

If `x+y=2k-1, and x^(2)+y^(2)=9-4k+2k^(2)`, what is xyin terms of k?

A

`k-2`

B

`(k-2)^(2)`

C

`(k+2)^(2)`

D

`k^(2)-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( xy \) in terms of \( k \), we start with the two equations given: 1. \( x + y = 2k - 1 \) 2. \( x^2 + y^2 = 9 - 4k + 2k^2 \) We will use the identity for the square of a sum: \[ (x + y)^2 = x^2 + y^2 + 2xy \] ### Step 1: Substitute the values into the identity Substituting the values from the equations into the identity: \[ (2k - 1)^2 = x^2 + y^2 + 2xy \] ### Step 2: Expand the left-hand side Now, we expand the left-hand side: \[ (2k - 1)^2 = 4k^2 - 4k + 1 \] So we have: \[ 4k^2 - 4k + 1 = x^2 + y^2 + 2xy \] ### Step 3: Substitute \( x^2 + y^2 \) Now we substitute \( x^2 + y^2 \) from the second equation: \[ 4k^2 - 4k + 1 = (9 - 4k + 2k^2) + 2xy \] ### Step 4: Rearrange the equation Rearranging gives us: \[ 4k^2 - 4k + 1 - 9 + 4k - 2k^2 = 2xy \] ### Step 5: Simplify the equation Now we simplify: \[ (4k^2 - 2k^2) + (-4k + 4k) + (1 - 9) = 2xy \] This simplifies to: \[ 2k^2 - 8 = 2xy \] ### Step 6: Solve for \( xy \) Now, we divide both sides by 2: \[ k^2 - 4 = xy \] Thus, we have: \[ xy = k^2 - 4 \] ### Final Answer The value of \( xy \) in terms of \( k \) is: \[ \boxed{k^2 - 4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=k^(2) , and xy=8-4k , what is (x+y)^(2) in terms of k ?

If (x)/(y)=(4)/(3) and (x)/(k)=(1)/(2) , what is the value of (k)/(y) ?

If x^(2)+y^(2)-4x-6y+k=0 touches x-axis then k=

If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

The line 3x-2y=k meets the circle x^(2)+y^(2)=4r^(2) at only one point, if k^(2)=

If x = 2k-1 and y=k is a solution the equation 3x-5y-7=0 ; find the value of k.

The tangent to the circle x^(2)+y^(2)-4x+2y+k=0 at (1,1) is x-2y+1=0 then k=

If the circles x^(2) + y^(2) = k and x^(2) + y^(2) + 8x - 6y + 9 = 0 touch externally, then the value of k is

If the circles x^(2) + y^(2) + 5 Kx + 2y + K = 0 and 2x^(2) + y^(2)) + 2Kx + 3y - 1 = 0, (K in R) intersect at the point P and Q then the line 4x + 5y - K = 0 passes P and Q for :

For what value of k does the system of linear equations 2x+3y=7 and (k-1)x + (k+2)y =3k have an infinite number of solutions