Home
Class 12
MATHS
For all x, (x^(2)-3x+1)(x+2)=?...

For all `x, (x^(2)-3x+1)(x+2)=?`

A

`x^(3)-x^(2)-5x+2`

B

`x^(3)-x^(2)-5x-2`

C

`x^(3)-x^(2)+5x+2`

D

`x^(3)+x^(2)-5x+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((x^2 - 3x + 1)(x + 2)\), we will use the distributive property (also known as the FOIL method for binomials). Here’s a step-by-step breakdown: ### Step 1: Distribute \(x + 2\) to each term in \(x^2 - 3x + 1\) We will multiply each term in the first polynomial by each term in the second polynomial: \[ (x^2 - 3x + 1)(x + 2) = (x^2)(x) + (x^2)(2) + (-3x)(x) + (-3x)(2) + (1)(x) + (1)(2) \] ### Step 2: Perform the multiplications Now we will calculate each multiplication: 1. \(x^2 \cdot x = x^3\) 2. \(x^2 \cdot 2 = 2x^2\) 3. \(-3x \cdot x = -3x^2\) 4. \(-3x \cdot 2 = -6x\) 5. \(1 \cdot x = x\) 6. \(1 \cdot 2 = 2\) Putting these together, we have: \[ x^3 + 2x^2 - 3x^2 - 6x + x + 2 \] ### Step 3: Combine like terms Now we will combine the like terms: 1. For \(x^2\) terms: \(2x^2 - 3x^2 = -x^2\) 2. For \(x\) terms: \(-6x + x = -5x\) So, combining everything gives: \[ x^3 - x^2 - 5x + 2 \] ### Final Result Thus, the expression \((x^2 - 3x + 1)(x + 2)\) simplifies to: \[ \boxed{x^3 - x^2 - 5x + 2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For all x, (2x +5)^2(-3x + 7)= ?

For all x > 21, ((x^(2) + 8x + 7)(x - 3))/((x^(2) + 4x - 21)(x + 1)) = ?

For all nonzero values of x, (12x^(6) - 9x^(2))/(3x^2) = ?

For all real numbers x , f(2x) = x^(2) - x + 3 . An expression for f(x) in terms of x is

Let F:R to R be such that F for all x in R (2^(1+x)+2^(1-x)), F(x) and (3^(x)+3^(-x)) are in A.P., then the minimum value of F(x) is:

The sum of all value of x so that 16^((x^(2)+_3x-1))=8^((x^(2)+3x+2)) , is

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If (x - p)/(x^(2) - 3x + 2) takes all real values for x in R then the range of P is

Which of the following are polynomials ? (i) x^(2)-3x+1 " " (ii) x^(2)+5x+2 " "(iii) x-(1)/(y) " " (iv) x^(7)+8 " " (v) x^(3)+sqrt(x)-2 (vi) sqrt(2)x^(2)+x-1 " " (vii) (3x-1)(x+5) " " (viii) (x-(3)/(x))(x+2) " " (ix)2x^(2)-1 (x) x+(1)/(sqrt(x))+2