Home
Class 12
MATHS
Let < x > denote the greatest integer le...

Let < x > denote the greatest integer less than or equal to x. For example : `<5.5> = 5` and `<3> = 3`. Now, which column below is larger?
`{:("Column A",xge0,"Column B),(sqrt(x), ,x):}`

A

If column A is larger

B

If column B is larger

C

If the columns are equal

D

If there is not enough information to decide

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the two columns given: - Column A: \( \sqrt{x} \) - Column B: \( x \) We will evaluate these expressions for different values of \( x \) in the domain \( x \geq 0 \). ### Step-by-Step Solution: 1. **Evaluate for \( x = 0 \)**: - Column A: \( \sqrt{0} = 0 \) - Column B: \( 0 \) - Conclusion: Column A = Column B 2. **Evaluate for \( x = 1 \)**: - Column A: \( \sqrt{1} = 1 \) - Column B: \( 1 \) - Conclusion: Column A = Column B 3. **Evaluate for \( x = 2 \)**: - Column A: \( \sqrt{2} \approx 1.414 \) - Column B: \( 2 \) - Conclusion: Column A < Column B 4. **Evaluate for \( x = 4 \)**: - Column A: \( \sqrt{4} = 2 \) - Column B: \( 4 \) - Conclusion: Column A < Column B 5. **Evaluate for \( x = 9 \)**: - Column A: \( \sqrt{9} = 3 \) - Column B: \( 9 \) - Conclusion: Column A < Column B 6. **General Observation**: - For \( 0 \leq x < 1 \): \( \sqrt{x} \) is greater than \( x \). - For \( x = 1 \): \( \sqrt{x} = x \). - For \( x > 1 \): \( \sqrt{x} < x \). ### Final Conclusion: From the evaluations, we can conclude that: - For \( x = 0 \) and \( x = 1 \), both columns are equal. - For \( x > 1 \), Column B is larger than Column A. - Therefore, there is not enough information to definitively say which column is larger for all \( x \geq 0 \). The correct answer is **D: There is not enough information to decide**.
Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column A",x > 0, "Column B"),(1//2x,,2x):}

{:("Column A", " ","Column B"),((sqrt(2))/(3)," ",2//5):}

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

{:("Column A", x + y = 1, "Column B"),(x,,y):}

{:("Column A",x > 0, "Column B"),(x^3 + 1,,x^4 + 1):}

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

{:("Column A",x ge 1, "Column B"),(x^(10),,x^(100)):}

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

{:("Column A",0 < x < 1, "Column B"),(x^2,,"x"):}

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=